AGRICULTURAL AND FOOD CHEMISTRY

Stable Isotope Dilution Analysis of Small Molecules with Carboxylic Acid Functions Using ¹⁸O Labeling for HPLC-ESI-MS/MS: Analysis of Fumonisin B₁

Dominik Bergmann, Florian Hübner, and Hans-Ulrich Humpf*

Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, 48149 Münster, Germany

Supporting Information

ABSTRACT: ¹⁸O labeling is a well-known method for the stable isotope labeling of proteins and peptides. This study describes a modified procedure for using ¹⁸O labeling on small molecules. Fumonisin B₁, a worldwide occurring mycotoxin, which is routinely analyzed by HPLC-MS/MS, was chosen as model compound. ¹⁸O labeling was achieved by acid-catalyzed oxygen exchange from H₂¹⁸O. A mixture of different isotopologues was obtained from the exchange, which, however, could be used as an internal standard for HPLC-MS/MS analysis. The identity of the ¹⁸O-labeled fumonisin B₁ was confirmed by NMR and HRMS measurements. The applicability as internal standard has been verified by comparison of results obtained from the method described in this paper to results obtained by reference methods. The presented method is of special interest as the ¹⁸O labeling can be generally applied to a large group of small molecules containing carboxylic groups.

KEYWORDS: fumonisin B₁, ¹⁸O labeling, carboxylic groups, Fusarium, mycotoxin, HPLC-MS/MS, stable isotope dilution analysis

INTRODUCTION

Fumonisins are toxic secondary metabolites produced by a large number of fungi of the genus Fusarium and also some fungi of the genus Aspergillus.^{1,2} The structure of B-type fumonisins (Figure 1) consists of a C_{20} backbone, which bears hydroxy groups at different positions. Fumonisins $B_1(2)$, $B_2(5)$, and B_3 (6) are the most abundantly occurring fumonisins in nature. The hydroxy groups at positions C14 and C15 are often esterified by propane-1,2,3-tricarboxylic acid moieties (1) but partially (3a, 3b) or fully (4) hydrolyzed fumonisins are also known.1 They can be found worldwide as contaminants of many grains, especially maize, and plant-derived foods.^{3,4} Fumonisins are toxic toward many different animals. Known animal diseases caused by fumonisins are hepatocarcinogenic effects on rats and mice, equine leukoencephalomalacia in horses, and pulmonary edema in pigs.⁵ Their toxicity toward humans is still unclear. There is some evidence that fumonisins might be involved in the formation of esophageal cancer and might have a negative effect on neural tube development in embryos.^{6,7} Maximum levels for fumonisin contamination have been decreed by many countries, for example, the members of the European Union (EU).8 Therefore, food is routinely analyzed for fumonisins B_1 and B_2 .

Liquid chromatography coupled with fluorescence detection after derivatization or with mass spectrometry is the preferred analytical method. Mass spectrometric methods that are used for complex matrices such as food are often limited in their reliability by matrix effects leading to ion suppression. The use of stable isotopically labeled standards can compensate for these matrix effects.⁹

Unfortunately, labeled analytical standards of complex molecules such as fumonisins are not easily available. Often, biochemical production methods are used where fungi or other microorganisms are grown on large amounts of ¹³C-labeled

substrates.¹⁰ A major disadvantage of this production method is the relatively high price for the labeled compounds.

The exchange of oxygen atoms in carboxyl groups by H₂¹⁸O has been known for a long time. For example, this exchange reaction had already been shown in 1939 by Mears and Sobotka¹¹ to be suitable for the labeling of amino acids and proteins. The mechanism follows a simple nucleophilic substitution reaction analogous to an ester hydrolysis with a tetrahedral intermediate. The crucial step is the protonation of the carbonyl oxygen. Therefore, the pK_a values are of particular importance.¹² In this study we used fumonisin B_1 as the target compound for ¹⁸O labeling. The aim of our work was the synthesis of a stable isotopically labeled standard that can be applied in a simple method to analyze fumonisin B₁ in maizebased food. Therefore, a method described previously for the labeling of proteins was modified to be used for the labeling of fumonisins.¹³ The reaction conditions were optimized for high exchange rates of oxygen atoms and low saponification of ester bonds.

Finally, the ¹⁸O-labeled fumonisin B_1 was employed as an internal standard for the quantitation of samples naturally contaminated with fumonisins. These data were compared to the results that have been quantitated by validated routine methods to examine the suitability of the ¹⁸O-labeled standard.

MATERIALS AND METHODS

Chemicals. All solvents and reagents were purchased from Merck (Darmstadt, Germany), VWR (Darmstadt, Germany), Sigma-Aldrich (Steinheim, Germany), Grüssing (Filsum, Germany), and Carl Roth (Karlsruhe, Germany) in gradient or analytical grade. ${\rm H_2^{18}O}$ (97

Received:	May 23, 2013
Revised:	July 24, 2013
Accepted:	July 29, 2013
Published:	July 29, 2013

ACS Publications © 2013 American Chemical Society

² fumonisin B₁: R₁=1, R₂=1, R₃=OH, R₄=OH

3a partially hydrolyzed fumonisin B_1 : R_1 =1, R_2 =OH, R_3 =OH, R_4 =OH

3b partially hydrolyzed fumonisin B_1 : R_1 =OH, R_2 =1, R_3 =OH, R_4 =OH

4 hydrolyzed fumonisin B₁: R₁=OH, R₂=OH, R₃=OH, R₄=OH

5 fumonisin B₂: R₁=**1**, R₂=**1**, R₃=H, R₄=OH

6 fumonisin B₃: R₁=1, R₂=1, R₃=OH, R₄=H

Figure 1. Structures of the most important fumonisins.

atom % ¹⁸O) was obtained from Sigma-Aldrich. Water was purified with a Milli-Q Gradient A10 system (Millipore, Schwalbach, Germany).

Samples. Ground samples of different maize products from the European Union (EU) were kindly provided by Chemical and Veterinary Laboratory (Chemisches und Veterinäruntersuchungsamt, CVUA, Stuttgart, Germany) and Eurofins Food GmbH (Hamburg, Germany). These samples have been previously analyzed by validated LC-MS/MS methods for the determination of fumonisins in food and were used as reference materials. More detailed information on the analyzed samples can be found in Table 2.

Isolation of Fumonisin B₁. Fumonisin B₁ was isolated according to a procedure previously described by Hübner et al.¹⁴ Briefly, fumonisin B₁ was extracted from solid cultures of *Fusarium verticillioides* MRC 826, which was grown on cracked maize. A liquid–liquid extraction using a solvent system of *tert*-butyl methyl ether/butan-1-ol/ethanol/1% formic acid (5:5:1:10, v/v/v/v) was used for precleaning of the fumonisins that can be found in the organic phase. Afterward, the extract was purified over a strong anion exchange column. The final purification step was a cleanup using centrifugal partition chromatography, a liquid–liquid partition technique.

¹⁸O Labeling of Fumonisin B₁. Different reaction conditions have been tested for the exchange reaction that are shown in rows 1–3 of Table 1. The reaction conditions presented in row 3 were deemed best and used for an exchange reaction on a larger scale. For the preparation of larger amounts, 39 mg (0.054 mmol) of dry fumonisin B₁ was dissolved in 190 µL of H₂¹⁸O (97 atom % ¹⁸O) in a 1.5 mL screw cap autosampler vial forming a viscous solution, and 10 µL of trifluoroacetic acid was added. The vial was purged with argon, sealed tightly, and heated for 8 h at 50 °C in an aluminum block. To stop the reaction, water and trifluoroacetic acid were removed in a stream of nitrogen. The obtained crude product contained small amounts of partly hydrolyzed fumonisin B₁ (3a and 3b) or hydrolyzed fumonisin B₁ (4). These, however, do not interfere with the use as an internal standard in HPLC-MS/MS. Therefore, no further cleanup was carried out.

Standard Solutions. All standard solutions of ¹⁸O-labeled fumonisin B₁ were referred to the ¹⁸O₃-isotopologue. The crude product was dissolved in 10 mL of acetonitrile/water (50:50, v/v), and 2.57 mL of this solution was filled in a volumetric flask to 25 mL with acetonitrile/water (50:50, v/v) to obtain the internal standard stock solution with a concentration of 60 μ g/mL of ¹⁸O₃-fumonisin B₁. This solution was diluted with acetonitrile/water (30:70, v/v) containing 1% formic acid 1:40 to a concentration of 1.5 μ g/mL of ¹⁸O₃-fumonisin B₁ for the internal standard solution. A standard stock solution of fumonisin B₁ in acetonitrile/water (50:50, v/v) with a concentration of 100 μ g/mL was prepared. From this solution a standard solution containing 2.5 μ g/mL fumonisin B₁ in acetonitrile/water (30:70, v/v) containing 1% formic acid was prepared.

Stability of ¹⁸O-Labeled Fumonisin B₁. For stability testing a solution of ¹⁸O-labeled fumonisin B₁ in water was prepared from the crude product obtained by the reaction conditions presented in Table 1, row 1, containing approximately 2 mg/mL of labeled fumonisin B₁ in total. From this solution four aliquots of 10 μ L each were taken. Two were diluted with 190 μ L of acetonitrile/water (30:70, v/v)

containing 1% formic acid and the other two with 190 μ L of acetonitrile/water (60:40, v/v). The first solution was for the simulation of HPLC starting conditions, which might also be used in solutions in the daily laboratory routine; the second solution was for the simulation of long-term storage conditions of stock solutions. One solution of each solvent mixture was kept at room temperature (approximately 21 °C) and the other one in a refrigerator at 2–8 °C. After 0, 1, 2, 3, 28, and 112 days, samples of 10 μ L were taken, diluted with 90 μ L of water, and analyzed by HPLC-MS/MS.

Identification of ¹⁸O-Labeled Fumonisin B₁. High-resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR) spectroscopic data (¹H NMR and ¹³C NMR) were employed to confirm the identity of the obtained ¹⁸O-labeled fumonisin B₁.

Determination of the Purity of ¹⁸O-Labeled Fumonisin B₁. A Shimadzu liquid chromatograph (Shimadzu, Kyoto, Japan) with an LC-20AT pump, an SIL-20A autosampler, and a low-temperature evaporative light scattering detector (ELSD-LT) was employed for the determination of the purity of the crude product. Data acquisition was performed with LC Solution 1.21 SP1 software (Shimadzu). Chromatographic separation was carried out on a 125 × 4 mm i.d., 7 μ m, LiChrosorb RP-select B C8 column with a 4 × 4 mm i.d. guard column (Merck, Darmstadt, Germany) using a binary gradient of 1% aqueous formic acid (eluent A) and 1% formic acid in methanol (eluent B). HPLC parameters were as follows: flow rate, 1 mL/min; injection volume, 20 μ L; gradient, 45% eluent A (0 min), 25% A (25 min), 10% A (35 min), 10% A (45 min), followed by returning to starting conditions (46 min) and equilibration of the system (55 min).

Sample Preparation. All ground maize samples were directly used for extraction. Analyses were carried out in duplicate and measured twice. The arithmetic mean \pm standard deviation was calculated for each sample. Ten grams of sample was spiked with 100 μ L of the internal standard stock solution in a 50 mL conical screw-cap centrifuge tube and extracted with 20 mL of acetonitrile/water (70:30, v/v) containing 1% formic acid. After vortexing (30 s) and sonification (10 min), samples were shaken mechanically for 15 min. Samples were centrifuged (15 min, 8000g, 25 °C), and an aliquot of 1 mL of the clear supernatant was diluted with the same volume of 1% aqueous formic acid. Cloudy samples were filtered through a 25 mm diameter, 0.2 μ m pore size, polypropylene syringe filter.

HPLC-MS/MS Analysis. An API 3200 mass spectrometer (Applied Biosystems, Darmstadt, Germany) coupled to an Agilent 1200 series HPLC (Agilent, Böblingen, Germany) was employed for the quantitation of fumonisin B_1 in food samples in the multiple reaction monitoring mode (MRM). Data acquisition was performed with Analyst 1.4.2 software (Applied Biosystems).

A QTRAP 5500 mass spectrometer (AB SCIEX, Darmstadt, Germany) coupled to a VWR Hitachi LaChrom Ultra HPLC system (VWR, Darmstadt, Germany) was employed for the determination of the ¹⁸O contents in the ¹⁸O-labeled fumonisin B₁ in MRM mode. Data acquisition was performed with Analyst 1.5.2 software (AB SCIEX).

HPLC Parameters. Chromatographic separation was carried out on a 150×2 mm i.d., 3 μ m, Hyperclone C8 3 μ m BDS 130 Å column with a 4 \times 3 mm i.d. guard column (Phenomenex, Aschaffenburg, Germany) using a binary gradient of 1% formic acid in acetonitrile (eluent A) and 1% aqueous formic acid (eluent B). HPLC parameters were as follows: flow rate, 300 μ L/min; injection volume, 20 μ L (API 3200) or 10 μ L (QTRAP 5500); column temperature, 40 °C; gradient, 35% eluent A (0 min), 62.5% A (4 min), 95% A (4.5 min), 95% A (6.5 min), followed by returning to starting conditions (7 min) and equilibration of the system (11 min).

MS/MS Parameters. For the API 3200 mass spectrometer, zero grade air was used as nebulizer gas (35 psi) and drying gas (45 psi) and nitrogen as curtain gas (30 psi) and collision gas (5×10^{-5} Torr). Drying gas was heated to 350 °C, and an ionization voltage of 5500 V in positive ionization mode was used. For each analyte of interest, two MRM transitions were measured with a dwell time of 50 ms each (quantifier and qualifier) to ensure correct identification of analytes. MRM transitions were as follows with the according parameters declustering potential (DP), entrance potential (EP), collision cell entrance potential (CEP), collision energy (CE) and collision cell exit potential (CXP) given in volts in parentheses: fumonisin $B_1(2)$ [M + H^+ 722 \rightarrow 334 (DP 121, EP 10, CEP 35, CE 55, CXP 8) and 722 \rightarrow 370 (DP 121, EP 10, CEP 35, CE 55, CXP 8); ¹⁸O₃-fumonisin B₁ [M $(+ H]^+$ 728 \rightarrow 334 (DP 121, EP 10, CEP 35, CE 55, CXP 8) and 728 \rightarrow 370 (DP 121, EP 10, CEP 35, CE 55, CXP 8); hydrolyzed fumonisin B₁ (4) $[M + H]^+$ 406 \rightarrow 334 (DP 61, EP 10, CEP 35, CE 35, CXP 8) and 406 \rightarrow 370 (DP 61, EP 10, CEP 35, CE 27, CXP 8); and fumonisin $B_2(5)$ and fumonisin $B_3(6) [M + H]^+ 706 \rightarrow 336$ (DP 121, EP 10, CEP 35, CE 55, CXP 8) and 706 \rightarrow 354 (DP 121, EP 10, CEP 35, CE 55, CXP 8). The first MRM transition listed was used as quantifier and the second as qualifier.

For the QTRAP 5500 system the same conditions were applied except for the following: curtain gas (20 psi), collision gas (medium), and dwell time (15 ms).

Calibration. For solvent calibration, eight different concentrations of fumonisin B₁ in acetonitrile/water (30:70, v/v) containing 1% formic acid between 25 and 500 ng/mL correlating with contamination values between 100 and 2000 μ g/kg were prepared from standard solution. They were spiked with the same constant level of ¹⁸O₃-fumonisin B₁ (150 ng/mL) from internal standard solution to compensate for matrix effects during ionization. Each calibration point was analyzed three times. Linear regression was used to calculate the regression curve. For quantitation, the calibration curves measured before and after the samples were averaged.

Method Evaluation. The limit of detection (LOD) and limit of quantitation (LOQ) were calculated according to the method of the German Standard DIN 32645.¹⁵ The calculation was described in detail by Kleigrewe et al.¹⁶

For the matrix calibration, polenta maize grits containing no detectable amount of fumonisin B_1 were spiked with unlabeled fumonisin B_1 from standard stock solution at eight levels ranging between 100 and 2000 μ g/kg. The extraction was carried out as described above. Each spiked sample was worked up in duplicate, measured twice, and used as a calibration point for the matrix calibration. Linear regression was used to calculate the matrix calibration curve and the coefficient of variation. The recovery was determined by comparing the matrix calibration curve and the solvent calibration curve with each other, allowing the calculation of the recovery over the whole calibration range.¹⁷

RESULTS AND DISCUSSION

Labeling of Fumonisin B₁. On the basis of the recent approach of Kozmin et al.¹³ we performed the exchange of oxygen atoms in the side chains of fumonisin B₁ catalyzed by trifluoroacetic acid. The fumonisin B₁ molecule bears 10 oxygen atoms in the two tricarboxylic acid side chains, which could possibly be exchanged with the heavier ¹⁸O isotope (Figure 1). However, complete exchange was not the main goal because even a mass increase of 4 Da is sufficient to prevent spectral overlap and because of the undesired ester hydrolysis of the side chains, which occurs during longer exposure to strong acidic conditions. Trifluoroacetic acid was chosen because it can easily be handled and removed after the reaction. Although the use of ¹³C-labeled fumonisin B₁ as an internal standard has been described by Varga et al.,¹⁸ ¹⁸O labeling has a major advantage. As mentioned in the Introduction, ¹³C labeling is carried out by the use of ¹³C-labeled substrates; therefore, relatively large amounts of labeled substrate are needed to produce small amounts of labeled secondary metabolites. Thus, ¹³C labeling is much more expensive when compared to the direct labeling of the desired compound using ¹⁸O-labeled water as a reactant.

Different exchange conditions were tested under the premise that the unlabeled fumonisin B_1 should not be detectable; the most intensive isotopologue should bear at least two ¹⁸O atoms to prevent spectral overlap with unlabeled fumonisin, and the amount of partially or completely hydrolyzed fumonisin B_1 species should be small. The results are given in Table 1. The best reaction conditions were 5% TFA at 50 °C for 8 h. However, when these reaction conditions were used on a larger scale, the distribution of ¹⁸O-fumonisin isotopologues differed considerably from those obtained in the preliminary test. The distribution of fumonisin B_1 isotopologues obtained under the exchange condition at a larger scale is shown in Figure 2.

Figure 2. Distribution of the ¹⁸O-fumonisin B_1 standard obtained from the large-scale exchange reaction. The column of hydrolyzed fumonisin B_1 shows the percentage of peak areas of the sum of all completely and partially hydrolyzed fumonisin B_1 isotopologues.

Only low amounts of byproducts that do not impair the use as a labeled standard can be found in the crude product. Thus, a further cleanup is not necessary. The purity of the internal standard and occurrence of byproducts was analyzed with HPLC-ELSD, and besides hydrolyzed fumonisins no other impurities were detectable. A purity of 92% was determined for the ¹⁸O-labeled standard, which is slightly different from the amount given for the sum of hydrolyzed fumonisins in Table 1. However, the HPLC-ELSD method is much less specific compared to the HPLC-MS/MS measurements, and other impurities such as propane-1,2,3,-tricarboxylic acid from ester hydrolysis of fumonisins will be detected as well.

The identity of the ¹⁸O-fumonisin B₁ standard was proven by accurate mass measurements and the characteristic fragmentation patterns of the unlabeled and labeled compounds. Comparison of ¹H NMR spectra showed no change in chemical shifts for the eight methylene protons of the side chains, which were measured between 2.4 and 2.8 ppm. In ¹³C NMR experiments the signals of the four C atoms of the

Table 1. Results of Different Reaction Conditions for the ¹⁸O Exchange in Fumonisin B₁

educts and reaction conditions			reaction products				
TFA (%)	2 (mg)	${{ m H_2}^{18}{ m O}} \ (\mu{ m L})$	T (°C)	t (h)	2 (%)	main product ^a (%)	sum of $(3a, 3b, 4)^{b}$ (%)
10	2	100	50	8	nd	24.2 (¹⁸ O ₆)	23.6
10	5	90	rt^c	28	0.5	28.3 (¹⁸ O ₄)	6.5
5	4	95	50	8	<0.1	27.1 (¹⁸ O ₆)	11.6
5	39	190	50	8	0.4	27.6 (¹⁸ O ₄)	5.8

^{*a*}The amount of the most intensive isotopologue is given in percentage of the sum of peak areas of all fumonisin B₁ species. ^{*b*}The sum of hydrolyzed fumonisins includes all completely and partially hydrolyzed fumonisin B₁ isotopologues. ^{*c*}Room temperature, approximately 21 °C.

carboxylic acid groups were not detectable, which might be caused by different upshifts due to 0-2 ¹⁸O atoms directly bound, leading to split signals and severely reducing the intensities.¹⁹ The signals of the carboxylic ester C atoms had intensities comparable to the unlabeled compound with very similar chemical shifts.

The synthesized ¹⁸O-fumonisin B_1 is a suitable standard for HPLC-MS/MS measurements due to the specific fragmentation in the mass spectrometer, where both ester bonds of the labeled side chains are cleaved for both most intense MRM transitions. Hence, the ratio of precursor to product ions always remains the same, although oxygen atoms in different positions of the two side chains are labeled.

Stability of ¹⁸O-Fumonisin B₁. Under acidic conditions the distribution of ¹⁸O labeling remains stable for 3 days at room temperature. These conditions are important for the sample preparation and following analysis. Long-term stability was observed under neutral conditions for up to 112 days at 4 °C. Therefore, storage of prepared standards is possible. Even better stability results can be expected at lower temperatures.

Sample Preparation. The sample preparation was performed according to an in-house method that is based on simple extraction with aqueous acidified acetonitrile solution. The labeled standard was added at the beginning to compensate for losses during sample preparation but also for matrix effects occurring during ionization in the mass spectrometer. Thus, the time needed for sample preparation was reduced because no further sample cleanup such as solid phase extraction or liquid—liquid distribution is necessary. After extraction, the samples were centrifuged, diluted, filtered, and directly analyzed by HPLC-MS/MS.

The results obtained with the matrix-matched calibration were used to calculate a LOD of 53 μ g/kg, a LOQ of 188 μ g/kg, and a coefficient of variation of 4.5% according to the method of the German Standard DIN 32645.^{15,16} Thus, the sensitivity of the used API 3200 mass spectrometer is sufficient to quantitate fumonisin B₁ levels below the lowest maximum level of 200 μ g/kg for baby food in the EU.⁸ The recovery rate was determined in polenta maize grits at eight concentrations over the whole range of the calibration curve between 100 and 2000 μ g/kg. In total, 32 data points were used to calculate the recovery of 94.8%. A further improvement in LOD and LOQ could be achieved when necessary by using a more sensitive mass spectrometer, for example, the QTRAP 5500.

Fumonisin B_1 in Maize-Based Food. To prove the applicability of the developed method, maize-based samples

that were previously quantitated by reference methods were analyzed. As can be seen from Table 2, the results are in very good agreement with those obtained by reference methods. Samples containing fumonisin B_1 also showed the MRM transitions of fumonisins B_2 and B_3 , which, however, were not quantitated due to the lack of standards.

Table 2. Fumonisin B_1 Levels^{*a*} of Food Samples Analyzed Using ¹⁸O₃-Fumonisin B_1 as Isotope-Labeled Standard in Comparison with Values Determined with Reference Methods

sample	concn ($\mu g/kg \pm SD$)	concn (ref method) (µg/kg)	rel deviation from ref method (%)
Serbian maize	1280 ± 12	1300	-1.5
whole maize	$2263^{b} \pm 23$	2200	2.9
maize kernels	1689 ± 51	1700	-0.7
popcorn maize	1407 ± 11	1383	1.7
tortilla chips nacho cheese	308 ± 8	312	-1.3
maize flour organic	847 ± 26	781	8.5
maize flour common	248 ± 38	244	1.8
ref blank popcorn maize	<lod<sup>c</lod<sup>		

^{*a*}Four measurements without correction by the recovery rate. ^{*b*}Estimated value, concentration outside the calibrated concentration levels. ^{*c*}Not detectable (LOD = 53 μ g/kg).

In summary, the developed HPLC-MS/MS method for the analysis of fumonisin B₁ using ¹⁸O-labeled fumonisin B₁ as internal standard shows very good agreement with the results of reference methods. The stability and suitability of the ¹⁸O-labeled fumonisin B₁ were shown for standard conditions. ¹⁸O labeling is a convenient method for the labeling of small molecules containing carboxylic acid groups using only small amounts of the labeling reagent $H_2^{18}O$. The exchange method can directly be applied to other fumonisins such as fumonisins B₂ and B₃ as well as other compounds with carboxylic acid groups.

The suitability of any labeled compound for stable isotope dilution analysis is affected by a possible "spectral overlap" caused by a too small increase of the m/z value together with an insufficient isotopic purity or by an inappropriate fragmentation behavior in MRM mode. Because the labeling with ¹⁸O atoms increases the m/z value by 2 atomic mass units, fewer numbers of exchanged atoms are needed in comparison to ²H and ¹³C labeling.

ASSOCIATED CONTENT

S Supporting Information

HRMS data of unlabeled and ¹⁸O-labeled fumonisin B_{1} ; ¹H NMR spectra of unlabeled and ¹⁸O-labeled fumonisin B_{1} ; stability of ¹⁸O-labeled fumonisin B_{1} ; and MRM transitions of the QTRAP 5500. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*(H.-U.H.) Phone: +49 251 8333391. Fax: +49 251 8333396. E-mail: humpf@wwu.de.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Wentzel C. A. Gelderblom for providing the *Fusarium verticillioides* strain MRC 826; Henning Harrer, Martin Rosenau, and Claudia Tenbrock for the isolation of fumonisin B_1 , Uwe Lauber, Stefanie Marschik, and Simone Staiger for supplying samples; and Angela Klusmeier-König for technical assistance. We thank AB SCIEX for supplying us with a QTRAP 5500 mass spectrometer and VWR for supplying us with a VWR Hitachi LaChrom Ultra HPLC system.

REFERENCES

(1) Rheeder, J. P.; Marasas, W. F. O.; Vismer, H. F. Production of fumonisin analogs by *Fusarium* species. *Appl. Environ. Microbiol.* 2002, 68, 2101–2105.

(2) Nielsen, K. F.; Mogensen, J. M.; Johansen, M.; Larsen, T. O.; Frisvad, J. C. Review of secondary metabolites and mycotoxins from the *Aspergillus niger* group. *Anal. Bioanal. Chem.* **2009**, 395, 1225–1242.

(3) Soriano, J. M.; Dragacci, S. Occurrence of fumonisins in foods. *Food Res. Int.* **2004**, *37*, 985–1000.

(4) Marasas, W. F. O. Discovery and occurrence of the fumonisins: a historical perspective. *Environ. Health Perspect. Suppl.* **2001**, *109*, 239–244.

(5) Voss, K. A.; Smith, G. W.; Haschek, W. M. Fumonisins: toxicokinetics mechanism of action and toxicity. *Anim. Feed Sci. Technol.* **2007**, *137*, 299–325.

(6) Sydenham, E. W.; Thiel, P. G.; Marasas, W. F. O.; Shephard, G. S.; Van Schalkwyk, D. J.; Koch, K. R. Natural occurrence of some *Fusarium* mycotoxins in corn from low and high esophageal cancer prevalence areas of the Transkei, southern Africa. *J. Agric. Food Chem.* **1990**, *38*, 1900–1903.

(7) Marasas, W. F. O.; Riley, R. T.; Hendricks, K. A.; Stevens, V. L.; Sadler, T. W.; Gelineau-Van Waes, J.; Missmer, S. A.; Cabrera, J.; Torres, O.; Gelderblom, W. C. A.; Allegood, J.; Martinez, C.; Maddox, J.; Miller, J. D.; Starr, L.; Sullards, M. C.; Roman, A. V.; Voss, K. A.; Wang, E.; Merrill, A. H. Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. *J. Nutr.* **2004**, *134*, 711–716.

(8) European Commission. Commission Regulation (EC) No. 1881/ 2006 of 19 December 2006 last amended by Commission Regulation (EU) No 1058/2012 of 13 November 2012.

(9) Trebstein, A.; Lauber, U.; Humpf, H.-U. Analysis of *Fusarium* toxins via HPLC-MS/MS multimethods: multi methods and strategies for compensation. *Mycotoxin Res.* **2009**, *25*, 201–213.

(10) Cramer, B.; Beyer, M.; Humpf, H.-U. Stable isotope labeled mycotoxins as standards for HPLC-MS/MS analysis: review and evaluation of published procedures for the introduction of stable isotopes into mycotoxins. In *Mycotoxin Prevention and Control in Agriculture*; Appell, M., Kendra, D. F., Trucksess, M. W., Eds.; ACS Symposium Series 1031; American Chemical Society: Washington, DC, 2010; pp 265–276.

(11) Mears, W. H.; Sobotka, H. Heavy oxygen exchange reactions of proteins and amino acids. J. Am. Chem. Soc. **1939**, *61*, 880–886.

(12) Bender, M. L.; Stone, R. R.; Dewey, R. S. Kinetics of an isotopic oxygen exchange between substituted benzoic acids and water. *J. Am. Chem. Soc.* **1956**, *78*, 319–321.

(13) Kozmin, Y. P.; Manoilov, A. V.; Serebryakova, M. V.; Mirgorodskaya, O. A. A direct introduction of ¹⁸O isotopes into peptides and proteins for quantitative mass spectroscopy analysis. *Russ. J. Bioorg. Chem.* **2011**, *37*, 719–731. (14) Hübner, F.; Harrer, H.; Fraske, A.; Kneifel, S.; Humpf, H.-U. Large scale purification of B-type fumonisins using centrifugal partition chromatography (CPC). *Mycotoxin Res.* **2012**, *28*, 37–43.

(15) Deutsches Institut für Normung e.V. (DIN). DIN 32645 Chemical Analysis: Decision Limit, Detection Limit and Determination Limit; Estimation in Case of Repeatability, Terms, Methods, Evaluation; Beuth Verlag GmbH: Berlin, Germany, 1994.

(16) Kleigrewe, K.; Söhnel, A.-C.; Humpf, H.-U. A new highperformance liquid chromatography-tandem mass spectrometry method based on dispersive solid phase extraction for the determination of the mycotoxin fusarin C in corn ears and processed corn samples. J. Agric. Food Chem. 2011, 59, 10470–10476.

(17) Funk, W.; Dammann, V.; Donnevert, G.; Ianelli, S.; Ianelli, E.; Gray, A. Phase I: Establishing a new analytical procedure. In *Quality Assurance in Analytical Chemistry*, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2006; pp 9–55.

(18) Varga, E.; Glauner, T.; Köppen, R.; Mayer, K.; Sulyok, M.; Schuhmacher, R.; Krska, R.; Berthiller, F. Stable isotope dilution assay for the accurate determination of mycotoxins in maize by UHPLC-MS/MS. *Anal. Bioanal. Chem.* **2012**, 402, 2675–2686.

(19) Risley, J. M.; van Etten, R. L. An ¹⁸O isotope shift upon ¹³C NMR spectra and its application to the study of oxygen exchange kinetics. *J. Am. Chem. Soc.* **1979**, *101*, 252–253.